
Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

OPTED
Online learning materials
Deliverable 3.4

Paul Balluff, Marvin Stecker, Hajo G. Boomgaarden, and
Annie Waldherr

University of Vienna

D3.4: Online learning materials

Disclaimer
This project has received funding from the European Union’s Horizon 2020 research &
innovation programme under grant agreement No 951832. The document reflects only
the authors’ views. The European Union is not liable for any use that may be made of the
information contained herein.

Dissemination level
Public

Type
Report

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

i

D3.4: Online learning materials

OPTED
Observatory for Political Texts in European Democracies:
Designing a European research infrastructure

Online learning materials
Deliverable 3.4

Authors: Paul Balluff, Marvin Stecker, Hajo G. Boomgaarden, and
Annie Waldherr

University of Vienna

Due date: March 2023

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

ii

D3.4: Online learning materials

Contents

1 Introduction 1

2 Tutorial Website 1

3 Third-Party Materials 3

4 Training Event 4

5 Tutorials 5
5.1 A Quick Tour through Meteor . 5
5.2 Elegant Web-Scraping: WordPress API . 14
5.3 Scraping Telegram: Alternative News Sources 21

References 28

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

iii

D3.4: Online learning materials

Executive Summary

Deliverable 3.4 presents a blueprint for online learning materials in the OPTED research
infrastructure. We showcase new training materials that we created and made available at
https://tutorials.opted.eu, as well as a collection of third-party materials. This deliverable
also explains the workflow for creating new trainingmaterials as well as gathering existing
materials.

1 Introduction

Work Package 9 conducted a survey for assessing the training and research needs among
the user community of the OPTED platform. The findings in D9.3 suggest that the major-
ity of scholars learn computational text-analysis techniques via online learning materials.
However, the survey also shows that the availability and quality of materials pose major
obstacles for scholars who have not used computational text analysis yet, but who would
be interested in doing so. Furthermore, there is also a need for materials for audiences at
all levels of experiences (beginner, intermediate, and expert).

With this deliverable, we partially address these needs and also show a blueprint for
future learning materials. We showcase the OPTED Tutorial website as well as a curated
collection of third-party tutorials. We propose to integrate the OPTED authored learning
materials in the OPTED platform and link to third party-materials.

We describe our new online learning materials that includes an outreach and training
event held by WP3 in February 2023. The webinar focused on introducing the Meteor (see
D3.2) platform to more researchers, explaining the design and usage of it, and strengthen
the community of Meteor users.

In the final sections, we present three tutorials that are also available on the tutorials
website. The tutorials aim to both teach specific skills and also act as a showcase for a
research workflow involving Meteor. In the first tutorial we show first-time users how to
leverage Meteor (see D3.2). It is an introduction to Meteor, established by OPTED in 2022,
and it shows howMeteor can be used to complement web-scraping projects. The other two
tutorials focus on specific pythonmodules for retrievingmedia text data via theWordPress
API and Telegram messenger.

2 Tutorial Website

We created a website dedicated for hosting online learning materials (https://tutorials.opte
d.eu). It serves as a blueprint for a research infrastructure, and showcases what a workflow
for creating and disseminating learning materials can look like.

We use Quarto1 as content management system. Quarto is a static site generator,
which means that the source material for the webpages is stored in a plain text format
which are then compiled into various output formats. The content management system
can not only output the plain texts to a website, but also generate PDFs or other formats.
The plain text format of the source material also makes it simpler to migrate the content to

1https://quarto.org/

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

1

https://tutorials.opted.eu
https://tutorials.opted.eu
https://tutorials.opted.eu
https://quarto.org/

D3.4: Online learning materials

other management systems in the future as needed. Of course, there are also other static
site generators available, such as Hugo2 or Jekyll3. We choseQuarto because it is designed
to include executable code blocks. This means that the authors of tutorials can write code
in R or Python and Quarto executes the code on compilation. This feature is especially
useful for generating plots or dealing with dynamically generated data.

The plain text files alongside the styling information is stored in the OPTED Github
repository4. This allows cooperation among authors, integration between Work Packages,
version control, as well as reacting to user feedback. If authors contribute a new tutorial,
the repository maintainers can assess the tutorial’s quality before it becomes published
on the website. GitHub also allows for discussions for new contributions (so-called “pull
requests”) which facilitates the communication between the repository maintainers and
the tutorial authors.

Beyond the technical backbone of the tutorial website, we also propose a set of quality
criteria (or minimum standards) that new learning materials should meet:

Experience level & requirements The learning material should explicitly state the ex-
perience level of the target group. Users should see at a glance whether the material
is adequate for their skill level. Additionally, the technical requirements and previ-
ous knowledge should be listed. For example, if a tutorial assumes previous knowl-
edge of a programming language or a specific software package, then it should be
stated explicitly. Installation guides should also be provided.

High level introduction The learning material should start with a high level overview
that is free of technical jargon. The goals of the material should be mentioned as
well as the key learnings outcomes.

Coherence The learning material should be internally coherent. For example, after com-
pleting a tutorial, the reader should have a fully working example that serves as a
template for other applications.

Core concepts The learning material clearly explains core concepts (theoretical or tech-
nical). If a software package is introduced, then the most important functions (or
methods) should be explained. If a theoretical construct is used, then the construct
should be explained or point to the respective resources.

Facilitate Self-Learning If there are additional materials available (e.g., official docu-
mentations, user guides, or related tutorials), the author should point the user to-
wards them.

Sample data If data is required to complete the learning material, then the author should
make sample data available to the user via the OPTED platform.

Screenshots & visualisations The authors are encouraged to include visual materials in
their learning materials where possible.

2https://gohugo.io/
3https://jekyllrb.com/
4https://github.com/opted-eu/tutorial_website

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

2

https://gohugo.io/
https://jekyllrb.com/
https://github.com/opted-eu/tutorial_website

D3.4: Online learning materials

Additionally, we propose to link tutorials to the wider OPTED infrastructure by tag-
ging learning materials with a taxonomy. Analogous to the meta-variables of the tool
collection (D3.3), learning materials would also be tagged according to operations (e.g.,
API access, or text cleaning) and conceptual categories (e.g., sentiment analysis, populism
detection, ideological positioning of texts) where applicable. The linkage could also go
even further, by connecting learning materials with specific data sources (e.g. WP5 par-
liamentary speeches), or languages (e.g., specific text analysis steps for Hebrew). With
such a tagging system, the users of the learning materials could be pointed towards more
available resources in the OPTED platform. Additionally, it would enable to discover blank
spots where more materials are needed.

3 Third-Party Materials

In D3.3 we presented a collection of tools for text analysis. In some cases the authors of
tools point their readers towards tutorials or other learning materials. We included such
information in Meteor, so that users can not only view meta-information on the tool (see
D3.3), but also have a collection of associated learning materials. In the context of a Euro-
pean research infrastructure, we propose that authors of tutorials and other learning ma-
terials can add them to the OPTED platform. The authors can either just link to their self-
hosted tutorial, or they can also choose to publish their materials on tutorials.opted.eu. The
first option gives tutorial authors freedom and flexibility, the latter option takes away the
burden of finding a webspace to host and publish their materials. In any case, the OPTED
platform should be user-centric in this regard, which means that the users should be able
to find high-quality, learning materials to various tools and text-analysis techniques. Ma-
terials listed on the OPTED platform should also be tagged (see D3.3), so that users can not
only search for training materials based on tools, but also based on operations (e.g., data
scraping, deep learning, or part-of-speech tagging) or concepts (e.g., sentiment, frames, or
populism).

We show here a curated selection of learning materials for tools (D3.3) that meet the
quality criteria outlined above:

AntConc A freeware corpus analysis toolkit for concordancing and text analysis. The
developer of the tool created detailed video tutorials5, where each video is between
5 and 15 minutes and focuses on one specific operation that AntConc can perform.

corpustools The R-package offers various tools for anayzing text corpora. It offers fea-
tures ranging from corpus management tools such as pre-processing, subsetting,
Boolean (Lucene) queries and deduplication, to analysis techniques such as corpus
comparison, document comparison, semantic network analysis and topic modeling.
It provides a tutorial6 for all package features alongside with sample data.

eMFDscore a library for the fast and flexible extraction of various moral information
metrics from textual input data. The developers provide a beginner friendly tutorial7

5https://www.youtube.com/playlist?list=PLiRIDpYmiC0R3Vv5NncOuIqaUcyLLW7Ae
6https://cran.r-project.org/web/packages/corpustools/vignettes/corpustools.html
7https://github.com/medianeuroscience/emfdscore/blob/master/eMFDscore_Tutorial.ipynb

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

3

https://www.youtube.com/playlist?list=PLiRIDpYmiC0R3Vv5NncOuIqaUcyLLW7Ae
https://cran.r-project.org/web/packages/corpustools/vignettes/corpustools.html
https://github.com/medianeuroscience/emfdscore/blob/master/eMFDscore_Tutorial.ipynb

D3.4: Online learning materials

where the core concepts are explained and sample data is provided.

pretext An R package to assess the consequences of text preprocessing decisions. The
package authors provide a getting started guide8, where they introduce the package
features with two sample datasets.

quanteda A framework for quantitative text analysis in R. quanteda is a good example
for a software package with a larger support structure. The authors provide a rich
tutorial website9 as well as a designated space on stackoverflow where users can ask
questions10 specifically about quanteda. Authors of quanteda extensions can also
add them to the official tutorial website. For example, newsmap11 that provides a
semi-supervised model for geographical document classification.

rsyntax R-package that provides Various functions for querying and reshaping depen-
dency trees, as for instance created with the spacyr or udpipe packages. This en-
ables the automatic extraction of useful semantic relations from texts, such as quotes
(who said what) and clauses (who did what). A theoretical introduction alongside a
walkthrough is available12 where each function of the package is explained.

vosonSML the R package is a suite of easy to use functions for collecting and generating
different types of networks from social media data. The package supports the collec-
tion of data from twitter, youtube and reddit, as well as hyperlinks from web sites.
The tool developers provide a website with detailed documentation and tutorials13

Every tool and learning material listed above is also included in Meteor.

4 Training Event

To encourage community involvement for theMeteor platform, as well as further promote
it’s usage in scientific research to academics, WP3 organised a webinar on Zoom to show-
case the capabilities of the inventory. The webinar was promoted via Twitter, generating
nearly 10,000 impressions and 32 sign ups. On the 28th February 2023, 14 viewers tuned
in to engage with the presentation of WP3.

Marvin Stecker, for WP1, introduced the audience to the overall goals of the OPTED
project. He highlighted the ambition of the project and the necessity for a text analysis
infrastructure to strengthen political communication research. Briefly discussing relevant
outputs, he pointed to the various Work Packages and tasks within the consortium: the
needs they address, how researchers might make use of them, and how they interlink
within OPTED and are used in the project. Amongst them are the different repositories
for text sources, but also work on methodological challenges and validation, as well as
skills deficits and tailored training.

8http://www.mjdenny.com/getting_started_with_preText.html
9https://tutorials.quanteda.io/

10https://stackoverflow.com/questions/tagged/quanteda
11https://meteor.opted.eu/view/Tool/newsmap
12https://github.com/vanatteveldt/rsyntax/blob/master/Querying_dependency_trees.pdf
13https://vosonlab.github.io/vosonSML/

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

4

http://www.mjdenny.com/getting_started_with_preText.html
https://tutorials.quanteda.io/
https://stackoverflow.com/questions/tagged/quanteda
https://meteor.opted.eu/view/Tool/newsmap
https://github.com/vanatteveldt/rsyntax/blob/master/Querying_dependency_trees.pdf
https://vosonlab.github.io/vosonSML/

D3.4: Online learning materials

Paul Balluff then introduced the Meteor platform in more detail. He began by laying
out the necessity of an overview of media sources and text analysis tools, and how the lack
of comparable resources hinders research. He also pointed towards a detailed conceptual
work as outlined in D3.1, D3.2 and Balluff et al. (2022).

In a live-demonstration, Balluff explained the user interface of the landing page and
demonstrated how to perform queries. He showed various detail views of the different en-
try types (news source, organization, tool, country, meta variables, etc.). Next, the process
of adding new entries was shown on example cases.

Balluff highlighted the community aspect of Meteor. It is a freely accessible web re-
source, open to be used by anyone without requiring a registration. However, a (privacy-
focused) user system is implemented to manage user contributions. Signing up is done
quickly, and then enables one to add new content to the repository. Experts for a particu-
lar’s country media system might add or correct information on missing media sources to
widen the scope ofMeteor. Others might develop a software package that works with text
data. Extensive guidance exists to help first-time users through this process. The integra-
tion of various APIs in the background also helps pull relevant information for the user,
e.g. from the CRAN software repository or through a DOI identifier, further lessening the
work load for individual contributors. Community involvement strengthens Meteor, so
Balluff invited attendees of the webinar to identify how they could add information to the
repository.

Furthermore, Balluff noted that Meteor is still under active development and new
features are planned to be added until the end of the project period. Attendees’ questions
focused on the scope of the repository and the considerations behind the concepts and
review system, to which Balluff explained the conception of the plattform and community
system (see the preceding Deliverables).

The OPTED team lastly highlighted that work is ongoing on various aspects of the
project, encouraging attendees to keep an eye on the project’s social media presence or
website to receive further updates in the future.

5 Tutorials

For sake of completeness and archival purposes, we attach the tutorials that we created
for tutorials.opted.eu. Please note that the collection of tutorials has not been completed
yet, since we are aiming to integrate the output of other Work Packages on the tutorial
website as well.

5.1 A Quick Tour through Meteor

OPTEDMeteor (Media Text Open Registry) is a comprehensive and curated platformwhere
researchers can search for text analysis tools, news sources, media organizations, data
archives, and corpora. The platform allows you not only to browse, query, and download
entries, but also make contributions to the platform. With your help, we are keeping
Meteor dynamic and adaptable. You can to quickly find ways to access news media data as
well as suitable text analysis tools and other digital resources. Figure 1 shows the landing
page of the platform and provides an overview of the most important features.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

5

D3.4: Online learning materials

Figure 1: Landing page of the platform

Free-text search bar allows to find entries by
fields such as name or description

Explore the database

Check out recent activity

Top navigation allows quick
access to make a new entry

Edit your profile, view your
entries and more.

Includes user guides,
explanations, and
links to external
resources.

5.1.1 What’s inside Meteor?

Meteor has different types of entries. The primary types are:
• Journalistic News Sources
• Media Organizations
• Datasets and Corpora
• Text Archives
• Tools for Text Analysis
There are also secondary types that help us to link entries with each other for example

countries, or channels such as Twitter or Instagram.

5.1.2 Exploring Meteor

You can find specific resources with a free text search field that provides instant results
(Figure 2).

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

6

D3.4: Online learning materials

Figure 2: Free text search with instant results.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

7

D3.4: Online learning materials

You can either click on one of the instant results, or click on the magnifying glass to
view even more results. The free text search also looks into the description text of entries,
alternative names, or the author field. So you can also find datasets or tools according to
the names of authors.

Another method of exploring the platform is by using the query screen which offers
a variety of filters (Figure 3).

Figure 3: Example of query with filters.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

8

D3.4: Online learning materials

You can find news sources depending on search criteria such as language, country,
channel, or even the size of the followers. Tools can also be queried according to various
meta information, such as programming languages, concepts, operations and so forth.

You then download the results in JSON format. One use case for this feature is that
a researcher can query the platform for Twitter accounts in a specific country, download
the query results and load them into a software for tweet collection.

Note: The download feature is not ready yet, but is coming very soon.

5.1.3 Detail View of Entries

Once you click on an entry, you get to the detail view (see Figure 4).

Figure 4: Example of detail view for a news source.

All related news sources are listed at the sidebar, which enables quick browsing
through Meteor. Since the ownership structure of news sources is stored in the database
as well, we also provide a network plot that helps you to explore these structures (Figure
5).

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

9

D3.4: Online learning materials

Figure 5: Example of ownership network.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

10

D3.4: Online learning materials

5.1.4 Contributing Entries

Meteor is fueled by its community. So we encourage users to contribute entries to the
database. We aim to make it as convenient as possible for to make contributions. A ques-
tionnaire guides you to enter the required meta-information (Figure 6). We provide differ-
ent questionnaires depending on the type of entry you are planning to make.

Figure 6: Screen for making a new entry.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

11

D3.4: Online learning materials

Meteor leverages available APIs to enrich the information automatically. For example,
we query Wikidata and Openstreetmap to retrieve general information for news sources
and organizations, such as geographic names or addresses. For channel-specific informa-
tion we call various APIs, such as siterankdata.com to retrieve information about daily
website visitor count, or the Twitter API to get the follower count of an account.

The metadata for tools, corpora, or datasets can be semi-automatically imported via
several APIs (Figure 7). We currently support CRAN, PyPI, arXiv, DOI, and GitHub.

Figure 7: Automatically retrieve meta-information from an API.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

12

D3.4: Online learning materials

5.1.5 Using Meteor in the Classroom

Beyond a resource for scholarly research, Meteor can also be used in courses with (under-
) graduate students. We successfully conducted a master level seminar where students
learned about comparative research, as well as the theoretical foundations of media sys-
tems. The course consisted of two parts. The first part discussed selected readings about
comparative research and (hybrid) media systems. The second part put these theoretical
considerations into practice by systematically comparing countries based on the landscape
of available news sources. For that purpose, groups of students chose two media systems
in Europe and defined the subsection of news media that they were interested in (e.g., tra-
ditional print press). Meteor allowed the students to compare the two systems based on
their sample of news sources.

You can find all the resources for the course we designed in the guides section of
Meteor14.

14https://meteor.opted.eu/guides/teaching-materials

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

13

https://meteor.opted.eu/guides/teaching-materials

D3.4: Online learning materials

5.2 Elegant Web-Scraping: WordPress API

• Difficulty: Medium
• Requirements:

– Basic knowledge of the python syntax
– Knowledge on how to use pip
– A favourite code editor (or so called “IDE”)15

5.2.1 Introduction

In this tutorial, we show how journalistic media texts can be retrieved by leveraging the
standard API provided by WordPress. WordPress was originally designed as a blogging
software, but it evolved to a complex content management software. Because is open-
source and can be used for free, it has become popular among professional news outlets,
citizen journalists, alternative media, and even online retailers (just to name a few). Ac-
cording to the developers of WordPress, around 43% of all websites run on WordPress!

Fortunately,WordPress provides a APIwhich can be queried to retrieve posts (or news
articles) in a standardized format. This means that most websites that use WordPress as
their content management system, all provide the exact same API. This is especially useful
for researchers, because high quality and rich data can be retrieved form a variety of news
sources without much customization.

We showcase how to retrieve posts using a python module16 developed by Mickaël
“Kilawyn” Walter on the example website Guido Fawkes17. The website is a good example,
because it is an alternative media outlet commenting on politics in the UK, but it is not
available in “traditional” data archives. Find out more about the website, including meta-
data, on Meteor18.

5.2.2 Overview

1. Installing the python module
2. Testing the API
3. Exploring the content
4. Querying a single post
5. Downloading and storing posts
6. Summary
A set of finished sample scripts can be downloaded at the bottom of this page.

5.2.3 Installation

First, clone (or download) our repository for wp-json-scraper. The module was origi-
nally developed byMickaël “Kilawyn” Walter and it provides a convenient wrapper for the

15If you are not sure about which IDE to use, we recommend VSCode (https://code.visualstudio.com/),
PyCharm (https://www.jetbrains.com/pycharm/), or Jupyter Notebook (https://jupyter.org/)

16https://github.com/opted-eu/wp-json-scraper
17https://order-order.com/
18https://meteor.opted.eu/view/Source/https_order_order_com_website

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

14

https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/
https://jupyter.org/
https://github.com/opted-eu/wp-json-scraper
https://order-order.com/
https://meteor.opted.eu/view/Source/https_order_order_com_website

D3.4: Online learning materials

WordPress API in python. We created a fork in our OPTED repository, where we made
some minor improvements to the already excellent software.

You can clone the repository with this command in your Terminal or shell:

git clone https://github.com/opted-eu/wp-json-scraper.git
cd wp-json-scraper

Alternatively, you can go to the GitHub repository, download it as zip file, and extract
it in the destination of your choice.

Next, open the root folder of the repository in your favourite code editor. For the
remainder of the tutorial, we always assume that you are in root directory of wp-
json-scraper (where you can find the files README.md and requirements.txt).

Now it is time to install the required modules for wp-json-scraper, you can do that
by opening a terminal and entering this command:

pip install -r requirements.txt

Additionally, we need the bs4 module for this tutorial:

pip install bs4

Finally, we make sure that the installation worked by creating a new python script
where we try to load the module:

1 from lib.wpapi import WPApi

This should run without errors.

5.2.4 Testing the API

First, we need to ensure that the website that we want to scrape actually uses Word-
Press and also has the API exposed. For this, we create a new script that we name
check_api.py. We load the required modules as follows:

1 from lib.wpapi import WPApi
2 from pprint import pprint # helper to pretty print output

Next, we declare the website that we want to check:

1 target = "https://order-order.com/"

Checking the availability of the API is rather simple, we just have to create an instance
of the WPApi class where we pass in our target as the first (and only) argument:

1 wordpress = WPApi(target)

Next, we get the basic information of the website and have it printed:

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

15

D3.4: Online learning materials

1 info = wordpress.get_basic_info()
2 pprint(info)

Depending on the website, you will get more or less output here. If the website does
not have WordPress (or the API is disabled), then the WPApi class will throw an error
(lib.exceptions.NoWordpressApi).

5.2.5 Exploring the content

Now that we have established that the API works as excected, we can move ahead and
explore the content. First, we want to see how many posts are availabale in total:

1 total_posts = wordpress.total_posts()
2 print(total_posts)

There are over 40,000 posts ready for download from the page. But before we move
on, let’s explore some other aspects.

For example, most blogs have categories associated with their posts:

1 categories = wordpress.get_categories()
2 print(len(categories))

The get_categories()method returns a list of dictionaries, where each represents
a single category. In this case, the categories object should have a length of 13. Let’s
print out the names of these categories:

1 for category in categories:
2 print(category['name'], category['id'])

We could also explore all available tags with get_tags() or all blog authors with
get_users():

1 users = wordpress.get_users()
2 print(len(users))
3 for user in users:
4 print(user['name'], user['link'])

Another feature is to search posts based on keywords. Wordpress has a fulltext index
of all posts, so you can query posts based on keywords that you find interesting:

1 europe = wordpress.total_posts(search_terms='europe')
2 print(europe)

There are over 2300 posts that contain the keyword 'europe'. You can also try other
keywords and check your results.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

16

D3.4: Online learning materials

5.2.6 Querying a single post

Before we scrape the entire contents of the website, let’s check the data structure of a
single post first. We can retrieve posts with the get_posts() method, which takes four
keyword arguments:

• comments (bool, default: False): indicate whether you want to retrieve comments
as well.

• start (int, default: None): select starting number of posts to retrieve. Default
setting is that it starts at the first post (usually sorted by date).

• num (int, default: None): set the limit of total posts to retrieve. Default setting is
without any limit.

• force (bool, default: False):: indicate whether you want to force downloading.
The WPApi client caches all posts in the background. If you do not want to use the
cached posts, then you select True.

To retrieve the newest post, we call the method with the following arguments:

1 posts = wordpress.get_posts(num=1)
2 print(len(posts))

The posts object is a list of dictionaries, where each dictionary represents a single
post. Because we set the limit (num) to 1, the list has the length of 1. So there is only one
post that we can unpack and inspect as follows:

1 post = posts[0]
2 print(post.keys())

The keys() method shows us all fields that a single object contains. We get meta-
information in a beautiful and standardized format. For example, regardless of the blog
layout or language, the date field is always in a machine readable format. The exact fields
that are interesting for your research might vary, but typically the most interesting fields
are:

• id (int): numeric ID of the post.
• date (str): Date and time post was published. Format YYYY-MM-DD HH:MM:SS.
• modified (str): Date and time post was modified. Format YYYY-MM-DD
HH:MM:SS.

• link (str): Official link to post. This is useful for checking the content later.
• title (dict): Title or headline of the post. The data is a dictionary that contains
the key rendered, which shows the title as it is served to the user.

• content (dict): Content (or body text) of the post. The data is a dictionary that
contains the key rendered, which shows the content as it is served to the user.

• excerpt (dict): Excerpt (or a summary) of the post. Same as above, the key of
interest is rendered.

• author (int): numeric ID of the author. To resolve the author names, we can use
the get_users() method.

• categories (list): a list of numeric category IDs. We can resolve the category
names by using the get_categories() method.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

17

D3.4: Online learning materials

• tags (list): similarly to categories, this is a list of numeric tag IDs that we can
resolve with the get_tags() method.

5.2.7 Reformatting a post

Of course, we could just take the post object and store it as a JSON file. However, then
we would also store less interesting information and would store the nested structure.
Therefore, we reformat some fields and also unnest the content.

First, we create a new empty dictionary that will hold the reformatted post and we
can already access some fields that we do not need to reformat:

1 cleaned_post = {'id': post['id'],
2 'link': post['link'],
3 'date_published': post['date'],
4 'date_modified': post['modified']}

To unnest the title field, we can do the following:

1 cleaned_post['title'] = post['title']['rendered']

The content field is a bit tricky, because it often also contains HTML fragments that
are used for formatting. There are several ways to approach this. In this tutorial, we are
going to use the bs4module which we downloaded in the installation section. We import
the BeautifulSoup class, which can parse HTML and remove all kinds of unwanted tags.

1 from bs4 import BeautifulSoup

The BeautifulSoup class handles all the troublesome aspects of parsing HTML and
helps us to simply return cleaned text by accessing the text attribute:

1 content = BeautifulSoup(post['content']['rendered'])
2 cleaned_post['content'] = content.text

Note: we could also extract links to other pages in this step, if we were interested in that.
Same applies to the excerpt field

1 excerpt = BeautifulSoup(post['excerpt']['rendered'])
2 cleaned_post['excerpt'] = excerpt.text

The next part that is tricky: it is to resolve the author, category, and tag IDs to their
names. It works the same way for all three IDs, so we show only here how to do it for the
author IDs. First we have to get all authors with the get_users() method:

1 users = wordpress.get_users()

Asmentioned above, this returns a list of dictionaries where each dict represents meta
information on a single author. We want to know which author has which ID, so we can
simply reformat the users list to a dictionary. The dictionary will have the author ID as
key and the author name as value:

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

18

D3.4: Online learning materials

1 authors = {}
2 for user in users:
3 authors[user['id']] = user['name']
4

5 print(authors)

We now got a dictionary where we can lookup authors by ID:

1 our_author = authors[post['author']]
2 print(our_author)

Finally, we can add that to our cleaned_post dictionary:

1 cleaned_post['author'] = authors[post['author']]

Finally, we have one post cleaned and reformatted. Let’s admire it:

1 pprint(cleaned_post)

5.2.8 Downloading and storing posts

In this section we cover how to download all posts that were published on the website.
Please proceed with care, because some websites have a lot of content. For the purpose of
the tutorial, we limit our scraping to 100 articles.

We will proceed as in the previous section, but this time we do not only apply it to
one article but to many articles in a for loop.

So a lot of code from above will be repeated. At some spots, we also make our code
more efficient.

5.2.9 Making preparations

Let’s ensure that we really have all authors, categories, and tags ready so we can resolve
their IDs. We use a shorthand notation here (see: dictionary comprehension if you want
to learn more), which is a bit harder to read, but does exactly the same as we have done
above:

1 users = wordpress.get_users()
2 authors = {user['id']: user['name'] for user in users}
3

4 categories = wordpress.get_categories()
5 categories = {c['id']: c['name'] for c in categories}
6

7 tags = wordpress.get_tags()
8 tags = {t['id']: t['name'] for t in tags}

Next, we need to set a directory where we will store our articles. There are many
ways to to that. In this tutorial, we will save every article as a single JSON file. We use the
pathlib here, which is very convenient for handling paths:

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

19

D3.4: Online learning materials

1 from pathlib import Path
2 p = Path.cwd() # get current working directory
3 output_dir = p / 'output' / 'order-order.com'
4

5 if not output_dir.exists():
6 output_dir.mkdir(parents=True)

This code simply creates a new directory structure while making sure that nothing is
overwritten. If you execute this code, a new folder will appear in your current working
directory.

Final preparation is to ensure that we loaded the json module:

1 import json

5.2.10 Downloading and parsing several posts

To download many posts, we added the yield_posts() method to the WPApi class,
which can handle downloading larger amounts of data. This method is a generator and
returns one post at a time as soon as it is downloaded. This allows us to process the post
as soon as it is downloaded and then store it to our output directory as a single JSON file.

Note: As mentioned above, we will limit our request here to 100 posts by using the num
keywords argument.

1 for post in wordpress.yield_posts(num=100):
2 post_id = post['id']
3 print(post_id)
4

5 cleaned_post = {'id': post_id,
6 'link': post['link'],
7 'date_published': post['date'],
8 'date_modified': post['modified']}
9

10 title = BeautifulSoup(post['title']['rendered'])
11 cleaned_post['title'] = post['title']['rendered']
12

13 content = BeautifulSoup(post['content']['rendered'])
14 cleaned_post['content'] = content.text
15

16 excerpt = BeautifulSoup(post['excerpt']['rendered'])
17 cleaned_post['excerpt'] = excerpt.text
18

19 cleaned_post['author'] = authors[post['author']]
20 cleaned_post['categories'] = [categories[c] for c in post['categories']]
21 cleaned_post['tags'] = [tags[t] for t in post['tags']]
22

23 with open(output_dir / f'{post_id}.json', 'w',
24 encoding = "utf8") as f:
25 json.dump(cleaned_post, f,
26 ensure_ascii=False)

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

20

D3.4: Online learning materials

Some additional information on above code block. We print out the current post_id,
because then we know whether the download is still running. The middle part is just
the condensed version of the code that we explained above. We also use the shorthand
notation for resolving the categories and tags. And finally we use json.dump() to store
the post in the output directory where the file name is the post ID.

When you execute this code block you can observe how the output directory is slowly
filled with single JSON files.

5.2.11 Summary

We have shown how to leverage the WordPress API to download media text data in a
structure and clean format. The example shown here was an alternative media outlet from
the UK. But the great advantage of this method is that above code works on a large number
of websites and does not require much adjustment.

5.3 Scraping Telegram: Alternative News Sources

• Difficulty: Medium
• Requirements:

– Basic knowledge of the python syntax
– Knowledge on how to use pip
– A favourite code editor (or so called “IDE”)
– A Telegram account (alongside a phone with telegram installed)

5.3.1 Introduction

In this tutorial, we show how journalistic media texts can be retrieved from Telegram.
Many news outlets, especially alternative media platforms use Telegram to engage with
their audiences. The low degree of moderation and supervision makes Telegram not only
an interesting platform for media outlets spreading (mis-)information, but also for fringe-
groups of the political spectrum. They tend to use public channels on Telegram to establish
their narratives or to recruit and to mobilise supporters.

This tutorial shows how to use the official API while respecting Telegram’s terms
of services. You can even retrieve many data points beyond only the message content.
Because you need to specify only the channel name, you can easily get started and study
information flows between channels or different social media platforms.

5.3.2 Preparations & Installation

To keep things neat and tidy, create a new directory for this tutorial and name it tele-
gram_scraping. For the remainder of the tutorial, we assume that all commands are run
from this directory.

Telegram API Account
Before we jump into this tutorial, make sure that you have a Telegram account and

retrieved your API credentials. Please note that a valid phone number is required to open
an account.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

21

D3.4: Online learning materials

The exact procedures for obtaining API credentials might change from time to time.
Therefore, please follow the steps outlined in the official documentation for Telegram de-
velopers19 and then come back to this tutorial with a valid API ID and API Hash.

Note: You can also find more information on how to retrieve API credentials in the
Telethon documentation20.

Required Packages
To install the Telethon library open a terminal and install it via pip

pip install telethon

5.3.3 Testing the API

Create a new file called secrets.json, this is where you store your Telegram API cre-
dentials. Saving them in a separate file keeps your credentials detached from the scraping
scripts. Open secrets.json and edit it accordingly:

{
"api_id": "<your api id>",
"api_hash": "<your api hash>"

}

Note: Please do not share your API credentials with anyone.
Next, we create a new python script and name it check_api.py in which we import

the following:

1 import json # to load our API credentials
2 from telethon.sync import TelegramClient # the Telegram client

If everything is installed correctly, these imports should run without errors.
Now, we load our API credentials:

1 with open('secrets.json') as f:
2 credentials = json.load(f)

Next, we instantiate a new TelegramClient where we pass in our API credentials:

1 client = TelegramClient('user',
2 credentials['api_id'],
3 credentials['api_hash']).start()

The TelegramClient class needs three arguments: the session name ('user'), the
API ID and the API hash. The session name tells Telethon where to store the session
credentials. The first time you run above code, you will be prompted to enter your phone
number to verify it is really you:

19https://core.telegram.org/api/obtaining_api_id
20https://docs.telethon.dev/en/stable/basic/signing-in.html

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

22

https://core.telegram.org/api/obtaining_api_id
https://docs.telethon.dev/en/stable/basic/signing-in.html

D3.4: Online learning materials

Please enter your phone (or bot token): 3551337

Once you entered your phone number, Telegram will send you a verification code to
your phone. You get prompted again to enter the verification code in python:

Please enter the code you received: 12345
Signed in successfully as User

We have to complete this only once. If you observe your current directory carefully,
you will notice that a new file appeared: user.session. Telethon stores the session
information in this file. The file name is specified in the first argument when instantiating
the TelegramClient (remember, we passed in 'user'). If you delete user.session,
you will have to repeat the login verification.

A great way of checking whether the client is configured correctly is by sending a
message to yourself:

1 client.send_message('me', 'Hello to myself!')

If you check Telegram on your phone, you should have received a message.

5.3.4 Connecting to a chat

In this tutorial we will explore the Telegram account by ovalmedia (see the entry on Me-
teor for more information21). It is an alternative media outlet that mainly offers content
on alternative video streaming platforms. They promote their recent videos on telegram
alongside a summary of each video. Of course, you could also use any other Telegram
account for this tutorial; feel free to experiment.

We create a new script connect.py where import the same modules as before and
instantiate the TelegramClient:

1 import json # to load our API credentials
2 from telethon.sync import TelegramClient # the Telegram client
3 from pprint import pprint # helper to pretty print
4

5 with open('secrets.json') as f:
6 credentials = json.load(f)
7

8 client = TelegramClient('user',
9 credentials['api_id'],

10 credentials['api_hash']).start()

Next, we save the username of ovalmedia in an object and use the get_entity()
method to retrieve the account:

1 account_name = 'ovalmedia_english'
2 chat = client.get_entity(account_name)

21https://meteor.opted.eu/view/Source/ovalmedia_english

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

23

https://meteor.opted.eu/view/Source/ovalmedia_english

D3.4: Online learning materials

We can now check the official name of the account by accessing the title attribute
of the chat object:

1 chat.title
2 # 'OVALmedia | English'

With this step, we can also verify whether we really got the account that we were
looking for.

5.3.5 Retrieving messages

Before we scrape all messages in a channel, let’s check a single message first. We can
retrieve messages with the get_messages() method, which takes the chat object as its
argument:

1 messages = client.get_messages(chat)

The messages object behaves like a python list, but additionally as a total attribute
that shows the total number of messages in the chat:

1 print(messages.total)

The first element in the list is also the most recent message, and we can access it like
this:

1 message = messages[0]

message the message object has a series of attributes, the most interesting for us are:
• id (int): message id within this chat
• date (datetime): timestamp when message was sent
• message (str): the actual message content
• forwards (int): number of times the message was forwarded
• views (int): number of chat members who have seen the message
Let’s have a look at the most recent message in the channel:

1 print('Newest message:')
2 print(message.id, message.date)
3 print('Message content:')
4 print(message.message)
5 print('Total views:', message.views, 'Total forwards:', message.forwards)

We can also use the to_dict()method to get all message contents and attributes as
a python dictionary:

1 pprint(message.to_dict())

Note: There is even more interesting data contained in the message object. For exam-
ple, the entities attribute is a list of message elements and can contain URLs stored as
MessageEntityTextUrl objects. This is potentially interesting, if you want to study infor-
mation flows. Another interesting attribute is media where you can retrieve attached images.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

24

D3.4: Online learning materials

Reformatting a message
Of course, we could just take the message.to_dict() object and store it as a JSON

file. However, then we would also store less interesting information and would store the
nested structure. Therefore, we reformat some fields and also unnest the content.

1 cleaned_message = {'channel_name': chat.username, # keep track on where we got
the message from↪

2 'id': message.id,
3 'date': message.date,
4 'content': message.message,
5 'forwards': message.forwards,
6 'views': message.views}

5.3.6 Downloading and storing all messages

If we want to retrieve all messages in from a telegram channel, we could use the
get_messages() method and iterate over the resulting list. This works well for
small chats, but less well for chats with thousands of messages. Instead, we use the
iter_messages() method, which retrieves messages in batches and also has useful
features such as limiting the number of messages to retrieve, or to search for keywords.

We create a new script that we name scrape_channel.py and we make the same
imports as before, but also import some utility modules

1 import json # to load our API credentials
2 from telethon.sync import TelegramClient # the Telegram client
3 from pprint import pprint # helper to pretty print
4 from pathlib import Path # makes handling file paths a breeze
5

6 with open('secrets.json') as f:
7 credentials = json.load(f)
8

9 client = TelegramClient('user',
10 credentials['api_id'],
11 credentials['api_hash']).start()
12

13 account_name = 'ovalmedia_english'

We prepare an output folder with the Path class:

1 p = Path.cwd()
2

3 output_dir = p / 'output' / account_name
4 if not output_dir.exists():
5 output_dir.mkdir(parents=True)

Next, we get the chat as we did before:

1 chat = client.get_entity(account_name)

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

25

D3.4: Online learning materials

Now, we use the iter_messages() method to incrementally retrieve messages
(from newest to oldest). We use the method as for-loop generator, where with every
iteration, we get a message, reformat it and then store it as a JSON file:

1 for message in client.iter_messages(chat):
2 print('Retrieving message:', message.id)
3

4 cleaned_message = {'channel_name': chat.username,
5 'id': message.id,
6 'date': message.date,
7 'content': message.message,
8 'forwards': message.forwards,
9 'views': message.views}

10

11 file_name = output_dir / f'{message.id}.json'
12

13 with open(file_name, 'w') as f:
14 json.dump(cleaned_message, f, indent=True, default=str)

Rate Limits: Telegram has rate limits in place. So if the chat that you want to scrape
has more than 3000 messages, you should adjust your code. Telethon provides the wait_time
keyword argument for this purpose where you can set a wait time in seconds between requests:
e.g. client.iter_messages(chat, wait_time=10)

When you execute the code block above, you can observe how the output directory
is filled with single JSON files, where each file represents a single message. Of course you
can also use pandas instead and construct a data frame:

1 import pandas as pd
2

3 tmp = []
4

5 for message in client.iter_messages(chat):
6 print('Retrieving message:', message.id)
7 cleaned_message = {'channel_name': chat.username,
8 'id': message.id,
9 'date': message.date,

10 'content': message.message,
11 'forwards': message.forwards,
12 'views': message.views}
13

14 tmp.append(cleaned_message)
15

16 df = pd.DataFrame(tmp)

Filtering Messages
We could also filter the results by using the search keyword argument, e.g.:

1 for message in client.iter_messages(chat, search='europe'):
2 ...

Or set an offset date to retrieve only messages before a certain date, e.g.:

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

26

D3.4: Online learning materials

1 from datetime import datetime
2 my_datetime = datetime.strptime('2022-12-31', '%Y-%m-%d')
3

4 for message in client.iter_messages(chat, offset_date=my_datetime):
5 ...

5.3.7 Summary

We have shown how to use the Telethon library to download media text data in a structure
and clean format. The example shown here was an alternative media outlet from Germany.
The advantage of this method is that the above code works on a large number of accounts,
since Telegram is also popular among political parties to engage with their supporters.

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

27

D3.4: Online learning materials

References

Balluff, P., Lind, F., Boomgaarden, H. G., & Waldherr, A. (2022). Mapping the European
media landscape – Meteor, a curated and community-coded inventory of news
sources. European Journal of Communication. https://doi.org/10.1177/0267323122
1112006

Topic Modelling

entiment Analysis

tificial Intelligence

emmatizing

earning

lgorithm

B
ig

 D
a

ta
S

cra
p

in
g

D
ic

ti
o

n
a

r
N

a
tu

ra
l L

a
n

g
u

a
g

e
 P

ro
ce

ss
in

g

Te
x

t M
in

in
g

OPTED

28

https://doi.org/10.1177/02673231221112006
https://doi.org/10.1177/02673231221112006

	Introduction
	Tutorial Website
	Third-Party Materials
	Training Event
	Tutorials
	A Quick Tour through Meteor
	Elegant Web-Scraping: WordPress API
	Scraping Telegram: Alternative News Sources

	References

