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Executive Summary 

We present a comprehensive collection of tools that are used for gathering, processing, and 
analysing media text data. We employ a wide and inclusive understanding of text analysis tools 
and define a set of properties for categorising tools. ๠e collection is stored in the knowledge 
graph we introduced in D3.1 and is therefore linked with the other inventories (e.g., news sources) 
created by our work package. ๠e tool collection contains 305 entries, is continuously reviewed 
and updated, and is available at Meteor (https://meteor.opted.eu/). 
 

1 Introduction  

๠e development and application of computational methods and especially automated content 
analysis methods is becoming an established branch in the social sciences. Communication 
science and political science departments have founded research groups specialised in 
computational social science or even founded new chairs or professorships (Geise & Waldherr, 
2021), new journals dedicated to the topic were launched (van Atteveldt et al., 2019a), and interest 
groups of important conferences have become institutionalised as “permanent divisions” 
(๠eocharis & Jungherr, 2021; Geise & Waldherr, 2021).  

Computational methods for text analysis are implemented with software and digital 
resources. Often these resources are adopted from software that has already been made available 
by other related disciplines (e.g., computer science, computational linguistics). In other cases, the 
tools are specifically developed by and for the various branches of computational social sciences 
(Boumans & Trilling, 2015, p.17). 

๠ere is no shortage of places to stumble upon new or already established tools, but it is 
difficult for researchers to keep an overview of them. For example, the Comprehensive R Archive 
Network (CRAN) lists over 18,000 packages1 and the Python Package Index (PyPI) even more 
with around 350,0002. ๠erefore, tool presentation slots at scientific conferences and tool 
workshops have become established formats. Journals prepare special issues on tool 
demonstrations (Bleicher et al, 2021; Strippel et al., 2022) and Twitter is a popular social media 
platform to receive tool recommendations for specific operations. ๠ere are also other structured 
curation efforts3 such as the list provided by Hepp et al., (2021, p. 4), or the CRAN Task view for 
Natural Language Processing4. 

Currently available databases for text analysis tools are a) often specialised to certain tasks 
such as data collection, b) include only a limited number of tools, c) do not allow for community 
contributions, or d) are designed for other target groups. A comprehensive tool database that 
includes the most relevant tools for text analysis and that offers search filters customised for the 
search requests of social scientists is missing so far. We argue that such an infrastructure can 
support the work with text analysis in multiple ways: First, a tool database will help potential 
researchers (i.e., end-users) to find available tools and to keep track of new developments. Second, 
a tool database can also help creators of tools, because it can increase their visibility and stimulate 
citations. Moreover, tool developers can make more informed decisions on whether an off-the 
shelf tool can be used as it is, whether it can serve as a baseline, or whether a completely new tool 
development is necessary (van Atteveldt et al, 2019b). ๠ird, a research infrastructure can collect 
the work of many different research teams at one platform and thus improve software 
sustainability (Kuchinke et al., 2016). Ideally, it helps to “move to a culture of sharing and reusing 
tools” (van Atteveldt et al. 2018, p.88) and to “stimulate the maintenance and documentation of 
tools” (van Atteveldt et al. 2018, p.88). 

                                                      
1 https://cran.r-project.org/web/packages/  
2 https://pypi.org/  
3 ๠ere are numerous lists available online, to name a few more: https://corpus.tools, https://tapor.ca, 

https://github.com/Leibniz-HBI/Social-Media-Observatory/wiki  
4 https://cran.r-project.org/web/views/NaturalLanguageProcessing.html  
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To promote sharing and documentation practices in the best possible way, we have built a 
tool database for computational social science and political communication. We integrated the 
tool collection in Meteor (https://meteor.opted.eu/) where users can not only search and browse 
the database, but also contribute to it. In this deliverable we present its scope, the properties 
documented for each tool, and a summary of the tools included so far. 
 

2 Scope of Collection  

๠ere is a great variety of available tools: some are highly specialised and can only perform one 
operation, others are a one-stop solution and offer a great number of features. Researchers 
querying our tool collection will get a holistic overview of available tools and can make informed 
decisions on choosing the “right” tool for the task. Tools come in various shapes and formats such 
as software packages, digital resources, or online services. We decided to employ a wide and 
inclusive understanding of tools and expanded the original scope of the deliverable. Instead of 
limiting the tools to specialised operations mainly useful for journalistic texts (WP3), the now 
presented collection includes tools that are likewise relevant for text types covered in WP2, WP4, 
WP5 and beyond, which is arguably of greater use for a large-scale research infrastructure like 
OPTED 

More precisely, the collection contains tools that are used for gathering, processing, 
analysing, and visualising text data.  

 Gathering text data goes beyond querying digital archives. Researchers of journalistic 
mass mediated texts collect them from a variety of sources: printed material, social media, 
websites, and so forth. All these collection methods require different specifications for the 
used software. For instance, mining data from social media platforms is often only 
possible with proper API access, which in turn requires the tool to have some server 
request routines in place and also often comes with a data storage solution. Digitising 
printed materials requires a completely different set of procedures such as optical 
character recognition and considerations such as the supported languages become critical. 

 Text processing includes a diverse set of operations and range from converting text from 
one data format to another, translation, removing features from the text (e.g., punctuation, 
URLs), over keyword extraction, to dependency parsing. 

 Data analysis is also an encompassing term, which includes applying rule-based methods 
to a corpus (e.g., dictionary analysis), or employing topic models. 

 Visualisation of text data such as word clouds do not only help to present the findings, 
but also to interpret them. For example, plots of word-co-occurrence networks assist 
researchers to make sense of the vast amount of data. 

๠e collection is confined to tools that are used for analysing text data and are readily 
available. Consequently, it does not include tools that are mainly used for other types of data 
(e.g., numerical data), but are sometimes applied to the results of a content analysis (e.g., linear 
regression, t-test). Furthermore, we also exclude tools which are still in development and have no 
working release yet (e.g., beta or preview versions are excluded). 

As a result, Meteor covers text analysis tools for a variety of text analysis tasks for a 
diverse group of text types. 

3 Tool Properties 

๠e tool collection is stored in a knowledge graph that allows for complex and interlinked 
data structures, and also enables browsing and querying the data flexibly. Analog to D3.1 we 
define a list of properties to systematically describe the tools. ๠ey mainly consist of meta 
information, but also include details on the operations the tool can perform and the concepts that 
it can measure. 

Most meta information is optional and the only required fields for every tool are name, 
authors, URL, platform, and the performed operation. ๠ese five are the minimum to identify 
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and describe a tool. A variety of properties are included to describe a tool’s usability (e.g., 
programming languages, graphical user interface, supported input formats). We also added 
properties that make it more convenient for scholars to find tools in various standardised and open 
software repositories. ๠is also includes GitHub since it is becoming more and more popular 
among researchers. ๠e complete list of properties is described in Table 1.   

Table 1: Properties of tools 

Property Description 

Name Name of the tool. 

Authors Authors of the tool. 

URL Link to the tool, such as a project website or software repository. 

Platform Operating systems that the tool supports: Windows, Linux, and MacOS. 

Used For Operation(s) the tool can perform (growing and curated list of operations). 

Published Year of publication. 

Last Updated Most recent date of update from one version to another. 

Version Current version as entered in the tool collection. 

Last Activity Last time of activity in repository (e.g., GitHub, PyPI, or CRAN). 

Description Description as provided by the authors. 

Concepts Concepts that the tool can measure (growing and curated list of concepts). 

DOI DOI to the tool or its major publication. 

arXiv ID in www.arxiv.org. 

CRAN Package name in the Comprehensive R Archive Network (CRAN). 

PyPi Package name in Python Package Index (PyPi). 

GitHub Repository on www.github.com. 

Programming Languages Programming languages that are used for the tool or can directly interface 
with it (list of 37 most common programming languages, see Appendix). 

Open Source Source code of the tool is open to the public (yes / no / NA). 

License License used for distributing the software. 

User Access 
Requirements to use the tool (Free / Registration / Upon Request / 
Purchase). 

Graphical User Interface Tool provides some form of Graphical User Interface (yes / no). 

Channels Tool is optimised for specific Channels as in D3.1 (Print, Website, 
Facebook, Twitter, Instagram, Telegram, Transcripts, VKontakte). 

Language Independent Tool is independent of languages (yes / no). 

Languages Languages the tool supports (list of languages as specified by ISO 639-2). 

Input File Format Accepted input file formats (growing and curated list of file formats). 

Output File Format File formats the tool can output (see above). 

Author Validated 
Authors of the tool reported some form of validation for the tool (yes / no / 
NA). 
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Validation Corpus 
Corpus that was used for validating the tool (link to inventory entry for 
corpora). 

Materials Links to additional materials that help using the tool (e.g., tutorials, 
documentation, scientific publications). 

Defunct Indicate if the tool is no longer maintained or ended its lifecycle (yes / no). 

Researchers often develop software for specific applications and present their tools in 
scholarly publications. For such cases we provide data fields to link to the corresponding 
publication (e.g., via a DOI), which makes it more convenient to cite the corresponding 
publication as well. 

๠e list of operations and concepts are dynamically added to the knowledge graph. 
Instead of starting with a finite list of possible operations tools could perform, we are using a 
bottom-up approach. When a tool is added to the collection that can perform a “new” operation 
(i.e., not yet part of the knowledge graph) the operation is added as well. In the course of an 
internal review process the operations are then verified by experts. ๠e verification includes 
adding a short description to the operation and also adding synonyms to the operation. ๠e 
reviewer also checks whether the operation is already listed in Meteor. ๠is prevents duplicated 
operations or very similar kinds of operations from appearing in the collection. ๠is process also 
includes subsuming very similar or closely related operations in one label. For example, the 
operations to remove stop words and to replace numbers with words (“100” to “one hundred”) 
are summarised as the operation “text cleaning” (see Figure 1). Another advantage of this 
approach is that the operations can continuously be evaluated and improved, based on feedback 
and input by the researcher community.  

๠e same logic applies to concepts a tool can measure, where we aim to balance between 
granularity of concepts and not having too many concepts in the collection. We understand 
concepts as theoretical constructs that researchers aim to measure or infer from texts. We 
acknowledge that the specific definitions for some concepts may differ among scholars to a great 
extent. For example, “sentiment” is a construct that is frequently measured in text analysis, but it 
also has various definitions (Hase, 2021). In such cases, the expert reviewers add alternative 
names to concepts as well as a description text that briefly notes the heterogeneity of the concept 
(see Figure 2).  

Finally, file formats are also added with a bottom-up approach, since there is an abundance 
of file extensions, which in turn are used by several programs with different implementations (e.g., 
the extension .sav is used by SPSS as well as a range of other programmes as binary data storage). 
๠erefore, we can ensure the file extensions are disambiguated by the reviewers, and also do not 
add an unnecessary long list of file formats and extensions to the inventory. 

Figure 1: Example of an operation 
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Figure 2: Example of a concept variable 

 
 

4 Integration with D3.1 

๠e tool collection is stored in the same knowledge graph as the collection of news sources, 
organisations, and data archives5. ๠is allows linking the entries based on properties such as 
channels or languages. Users can query the knowledge graph based on various criteria or use full-
text search to find specific tools. ๠e system also makes it easier for researchers to add their tools 
to the collection later, or also to facilitate the taxonomy of operations and concepts. 

A simple form allows adding a new tool and it comes with some convenience features. ๠e 
user can automatically retrieve meta-information via public APIs: DOI, arXiv, GitHub, CRAN, 
and PyPI. Depending on the API, information such as the author of the tool, links to 
documentation, licensing details, etc. are retrieved. 

After a new tool is entered, it is held back from public view and needs to be reviewed by an 
internal expert first. ๠e review process follows the same implementation of D3.1. 

5 Data collection 

In order to get a broad coverage of text analysis tools that are currently in use, we employed 
several strategies. We started with an internal survey of the OPTED consortium to receive an 
initial set of seven tools. ๠is also served to fine tune the property list (see Table 1) and exclusion 
criteria. 

Next, we reviewed all tools presented in the “Computational Methods Tool 
Demonstration” slots in the Computational Communication Methods division from the Annual 
Conferences of the International Communication Association 2018-2022 (ICA). We performed a 
Google Scholar and Google search for the presentation titles and authors, trying to find working 
papers, published articles or other information about the tool. In many cases, no further 
information about the presentation could be found or the tools presentation was more the 
presentation of a prototype or process protocol but not of actually completed tools that are made 
ready for users. ๠is yielded a total of 11 tools. 

                                                      
5 ๠e development is open source and available here: https://github.com/opted-eu/wp3inventory 
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Finally, we revisited the dataset used in D6.1 (Living Hub for Textual Research in a 
Multilingual World) which systematically reviewed 854 scientific publications (see: Baden et al, 
2021). We selected a subset of 406 articles which were marked to have employed some form of 
computer assisted text analysis. Four researchers manually reviewed the subset and extracted the 
tools which were used to perform the text analysis. If the publication contained supplementary 
materials (e.g., technical report, raw data files, replication scripts) they were downloaded and 
inspected as well. Among the 406 reviewed publications, 310 documented which tool they used, 
leaving 96 publications where the authors merely described the employed method, but not the 
software for performing it. As a result, we collected a total of 292 tools.  

6 Summary of Collection 

๠e following section presents an initial overview of the tools included in Meteor. Table 2 shows 
that R and Python are the most popular programming languages for tools included in Meteor. ๠is 
is perhaps unsurprising, as it mirrors the abundance of teaching materials or workshops available 
for these two languages targeted toward social scientists. ๠ese languages lend themselves 
towards modular packages that can be combined for different workflows, while the three 
following (Java and C/C++) are more associated with stand-alone, multi-purpose software or 
high-performance computing, mainly in computer science disciplines, respectively. 
 
Table 2: Programming languages of tools in Meteor, by frequency 

Programming Language Tools included 

1 R 78 25 % 
2 Python 76 24 % 
3 Java 31 10 % 
4 C 20 6 % 
5 C++ 15 4 % 
6 JavaScript 10 3 % 
7 PHP 7 2 % 
8 Ruby 7 2 % 
9 C# 6 1 % 
10 Perl 5 1 % 

 
Regarding the operations for which the tools can be used, dictionaries for text classification 

are the most popular (Table 3). ๠is might be explained by their flexibility because of their 
independence of specific programmes and by the fact that substantial research knowledge, but not 
programming knowledge, is required to create them. ๠is is followed by libraries for data 
acquisition from APIs provided by companies. ๠e high number is perhaps not a surprise, given 
the wide variety and life cycles of social media platforms in particular, and volatility of company 
policies on the other hand that require regular software updates to comply with API changes. It 
appears that developers do not always keep up with these changes, because 15 tools in our 
collection that can gather data from APIs are actually defunct, lowering the effective number of 
such tools to 27. 
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Table 3: Operations provided by tools in Meteor, by frequency 

Operation Tools capable of 

1 Dictionary Resource 66 

2 API Access 42 

3 Document Scoring 38 

4 POS-Tagging 31 

5 Word Frequencies & Corpus Statistics 29 

6 Supervised Machine Learning 26 

7 Tokenization 26 

8 Text Cleaning 24 

9 Network Analysis 23 

10 Data Scraping 22 

11 Topic Modelling 22 

12 Named Entity Recognition 21 

13 Document Classification 14 

14 Document Similarity Scoring 14 

15 Word Embedding 14 

16 Dictionary Analysis 13 

17 Lemmatization 13 

18 Data Visualization 12 

19 Dependency Parsing 12 

20 Stemming 12 

 
 

Over 75% (n = 230) tools included in Meteor are freely accessible to researchers or only 
require registration before they can be used without charge. Paid services make up only a small 
selection of the available tools (n = 38), while another 19 tools are available upon request from 
their authors. ๠is positions Meteor as an accessible resource for both academics as well as more 
generally interested users because most listed programmes can be explored without any financial 
hurdle. Together with the training materials provided later in OPTED (e.g., Deliverable D3.4), 
this ensures equitable access to software tools. 

Of the freely accessible tools, more than 77% (n = 179) are open source. ๠is fulfils the 
previously stated goal that Meteor might contribute to a vibrant ecosystem of application 
development by highlighting tool diversity as well as their source code. It encourages developers 
to contribute to respective packages. 

Despite the data collection criteria, which due to the consideration of research papers 
published a few years ago, might have turned up outdated software, over 90% of the tools included 
in Meteor are actively developed or usable in 2022. Meteor is therefore not a software archive, 
but a living inventory of relevant and current tools. Of the tools that are outdated and no longer 
functioning, more than half are designed to access APIs, perhaps challenged by their strong 
dependence on external company policies. 
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In terms of accessibility, nearly 40% (n = 121) of tools included are independent of languages 
and therefore suitable for research purposes in any European language. Yet, the greater share, 
specifically dictionaries, only support certain languages. ๠ey make up more than a third of all 
language dependent tools (n = 64). Table 4 shows the pronounced inequalities in availability of 
computational tools according to language. ๠is is one of the challenges tackled by WP6, with 
recommendations and standards for multilingual text analysis being developed to improve the 
research landscape. Meteor aims to provide a spotlight also for tools in less represented languages, 
to encourage more research (e.g., the construction of dictionaries in more languages) and to 
diversify the methodological toolkit. 

7 Conclusion 

๠is deliverable introduced the tool database as a central component of Meteor. ๠e size and scope 
of the current state of the collection is a manifestation of the significance that software tools have 
gained within the field of computational approaches to political communication over the last 
years. Not only relevant for journalistic texts but useful for various text types studied by social 
scientists or data journalists, the tool database will help its users to find, compare, and assess the 
most suited tools for specific tasks. Viewed from another perspective, with Meteor tool developers 
gain a fast overview about related tools in the field and benefit from a new platform to disseminate 
their tools to users. Overall, the tool database will foster the sustainability of text analysis software 
(Kuchinke et al., 206; Strippel, 2021). 

Looking ahead and inspecting the development and use of tools in social science more 
generally, a new database is only one important aspect. Additional efforts are necessary to foster 
the continued development, improvement and evaluation of high-quality tools. Meteor and 
OPTED can contribute further to an environment that supports the sustainability of research tools. 
Encouraging interdisciplinary standards in giving credit for the use of tools (Howison & Bullard, 
2016) or the building of communities for the sustainability of software (Katz, 2018) are just two 
examples. 
 
Table 4: Languages supported by language-specific tools in Meteor, by frequency 

Language Number of tools  Language Number of tools 

1 English 96 52 %  16 Hebrew 15 8 % 
2 German 41 22 %  17 Indonesian 15 8 % 
3 French 29 15 %  18 Polish 15 8 % 
4 Italian 27 14 %  19 Finnish 14 7 % 
5 Spanish 25 13 %  20 Korean 14 7 % 
6 Dutch 25 13 %  21 Turkish 14 7 % 
7 Portuguese 22 11 %  22 Czech 13 7 % 
8 Russian 22 11 %  23 Hindi 13 7 % 
9 Swedish 18 9 %  24 Lithuanian 13 7 % 
10 Arabic 17 9 %  25 Norwegian 13 7 % 
11 Danish 17 9 %  26 Catalan 12 6 % 
12 Chinese (Simplified) 17 9 %  27 Romanian 12 6 % 
13 Hungarian 16 8 %  28 Slovenian 12 6 % 
14 Japanese 16 8 %  29 Estonian 11 5 % 
15 Greek 15 8 %  30 Croatian 11 5 % 
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Appendix 

List of Programming Languages 

● APL 
● Assembly 
● Bash/Shell 
● C 
● C# 
● C++ 
● COBOL 
● Clojure 
● Crystal 
● Dart 
● Delphi 
● Elixir 
● Erlang 
● F# 
● Go 
● Groovy 
● Haskell 
● Java 
● JavaScript 
● Julia 
● Kotlin 
● LISP 
● Matlab 
● Node.js 
● Objective-C 
● PHP 
● Perl 
● PowerShell 
● Python 
● R 
● Ruby 
● Rust 
● SQL 
● Scala 
● Swift 
● Stata Script (Ado) 
● TypeScript 
● VBA 
 


